

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name				
Mathematics				
Course				
Field of study			Year/Semester	
Electromobility			1/1	
Area of study (specialization)			Profile of study	
			general academic	
Level of study			Course offered in	
First-cycle studies			polish	
Form of study			Requirements	
full-time			compulsory	
Number of hours Lecture	Laboratory classes	~	Other (e.g. online)	
60		>	Other (e.g. online)	
Tutorials	Projects/seminars			
45				
Number of credit points				
8				
Lecturers				
Responsible for the course/lecturer:		Responsible for	the course/lecturer:	
dr Marian Liskowski				
Instytut Matematyki, WARiE				
e-mail: marian.liskowski@put.pozna	in.pl			

tel. 61 665 2842

Prerequisites

Student possesses mathematical knowledge at basic level from secondary school. Student has logical reasoning skills

Course objective

The acquirement of knowledge and computational skills in single variable differential and integral calculus, linear algebra, analytical geometry and complex numbers that are necessary to handle engineering problems.

Course-related learning outcomes

Knowledge

1. Student has extended and in-depth knowledge of selected mathematic fields, including complex numbers, linear algebra, analytical geometry and single variable differential and integral calculus.

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

2. Student has a systematized knowledge in the field of mathematics, useful in formulating and solving complex problems in the area of electrical engineering.

Skills

- Student is able to obtain information from literature, databases and other properly selected sources, including information in English; is able to combine the obtained information, to interpret and critically assess it, to draw conclusions and to formulate opinions and provide exhaustive justifications for them
- 2. Student is able to use the known methods and mathematical models and, if necessary, modify them for the analysis and design of components of electronic systems.
- 3. Student is able to develop, evaluate and use existing analytical, simulational and experimental methods to solve complex engineering tasks in the field of electrical engineering, including non-typical tasks that contain a research component.
- 4. Student has the ability to learn independently, mainly in order to improve professional skills; is able to identify areas of detailed technical knowledge necessary to implement a specific engineering task and acquire them independently as well as present them

Social competences

- 1. Student understands the need of lifelong learning
- 2. Student is able to cooperate and work in a team, and take different roles in it
- 3. Student is able to define priorities which serve the implementation of a task assigned by him-/herself or by others

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Lectures:

- assessment of knowledge and skills at the written exam checking knowledge of concepts and the ability to solve short practical tasks
- passing threshold: 50% of points; exam issues, on the basis of which questions are prepared, will be sent to students by e-mail using the university e-mail system.

Tutorials:

- assessment of knowledge and skills at the short written tests (at the beginning of every tutorial)
- passing threshold: 50% of points

Programme content

COMPLEX NUMBERS

- Modulus, argument, principal argument
- Form: geometric, rectangular, polar (complex plane)
- Square root of complex number
- Quadratic equation on complex domain
- Derivation polar form from rectangular form
- de Moivre's formula

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

- formula for the n-th root of complex number
- formula for multiplication and division of two complex numbers that are in polar form
- Euler's formula for complex numbers

LINEAR ALGEBRA

- Definition of a cartesian product
- Definition of a matrix
- Matrix calculus (addition, multiplication matrix by scalar, multiplication matrix by matrix, transpose of matrix)
- Definition of a determinant
- Methods for calculation of a determinant:
 - o Sarrus' rule
 - Laplace expansion
- Definition of an inverse matrix
- Finding an inverse of a matrix (from definition, Gaussian elimination)
- Definition of a rank of a matrix
- Properties of a rank of a matrix
- Cramer's rule
- Kronecker-Capelli theorem
- Homogeneous system of linear equations
- Gaussian elimination
- Eigenproblem (eigenvalues and eigenvectors)

ELEMENTS OF ANALITYCAL GEOMETRY IN 3D

- Vectors in space
 - o Coordinates of a vector
 - Length of a vector
 - Vector calculus (addiction, multiplication vector by scalar, dot product, cross product, mixed product)
 - Definition of a dot product of two vectors
 - o Definition of a cross product of two vectors
 - o Parallel and perpendicular vectors
 - Formula for an area of the parallelogram/triangle spanned by two nonparallel vectors
 - Formula for an area of the parallelepiped/tetrahedron spanned by three nonplanar vectors
 - Angle between two vectors
- Plane in space
 - Standard form equation
 - Point-normal form equation
 - \circ Vector form equation
 - Equation of the plane passing through 3 points
- Line in space
 - Vector form equation
 - o Parametric form equation
 - \circ $\;$ Equation as intersection of two planes
- Relative position of the planes and the lines
 - An angle between planes or lines

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

- A distance between a point and the plane
- A distance between a point and the line
- A distance between two planes
- o A distance between two lines

SEQUENCES

- Definition of a sequence
- Monotonicity of a sequence
- Definition of a limit of a sequence
- Properties of limits of convergent sequences
- Definition and properties of Euler's number
- Indeterminate symbols

FUNCTION OF A SINGLE VARIABLE

- Definition of function, injection, surjection
- Explicit, implicit and parametric relations
- Definition of an one-to-one function, a monotonic function, an inverse function, a composite function
- Trigonometric functions, inverse trigonometric functions, hyperbolic functions, inverse hyperbolic functions
- Definition of limit of a function
- Definition of continuity of a function
- Asymptote of a function
- L'Hospital's rule
- Definition of a derivative of a function and its geometric interpretation
- Properties of derivation of functions
- Formulas for derivatives of sums, products, differences and quotients
- Definition of exact differential and its geometric interpretation
- Inverse function theorem
- Derivative of a parametrically defined function
- Logarithmic derivative
- Higher order derivative
- Chain rule
- Mean value theorem
- Extreme values of functions (necessary and sufficient conditions)
- Monotonicity of a function
- Inflection points (necessary and sufficient conditions)
- Concavity and convexity of a function

INDEFINITE INTEGRAL

- Definition of indefinite integral and anti-derivative
- Properties of indefinite integrals
- Integration by substitution
- Integration by parts

DEFINITE INTEGRAL

• Definition of definite integral

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

- Properties of definite integral
- Integration by substitution
- Integration by parts
- Geometric interpretation of definite integral
- Definition of region with repect to x axis
- Definition of region with respect to y axis
- Application of definite integral:
 - area of a region
 - o arc length
 - o area of surface of revolution
 - o volume of surface of revolution

IMPROPER INTEGRAL

- first type (infinite interval)
- second type (discontinuous integrand)

INFINITE SERIES

- Definition of an infinite series
- Summing an infinite series
- Necessary condition of convergence of an infinite series
- Convergence tests (comparision test, ratio test, root test)
- Definition of power series
- Convergence of power series
- Taylor series
- Fourier series

FUNCTION OF A SEVERAL VARIABLES

- Definition of a partial derivative
- Definition of an exact differential
- Schwarz's theorem
- Extreme values, critical point (necessary and sufficient conditions)
- Geometric interpretation of two variables function
- Conditional extrema
- Lagrange multipliers

Teaching methods

Lectures:

- lecture is conducted in an interactive way with formulating questions for a group of students or for selected students
- student activity during classes is taken into account when the final grade is considered

Tutorials:

- sample tasks are solved on the blackboard
- detailed discussion of solved tasks

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Basic

- 1. W. Żakowski, Matematyka, T.1 i T.2, WNT, Warszawa 2003.
- 2. M. Gewert, Z. Skoczylas, Analiza matematyczna 1 (Definicje, twierdzenia, wzory), GiS, Wrocław 2019.
- 3. M. Gewert, Z. Skoczylas, Analiza matematyczna 1 (Przykłady i zadania), GiS, Wrocław 2020.
- 4. T. Jurlewicz, Z. Skoczylas, Algebra i geometria analityczna 1, (Definicje, twierdzenia, wzory), GiS, Wrocław 2007.
- 5. T. Jurlewicz, Z. Skoczylas, Algebra i geometria analityczna 1, (Przykłady i zadania), GiS, Wrocław 2020.

Additional

- 1. W. Krysicki, L. Włodarski, Analiza matematyczna w zadaniach, T.1, T.2, PWN, Warszawa 2011.
- 2. M. Grzesiak, Liczby zespolone i algebra liniowa, Wydawnictwo PP, Poznań 1999.

Breakdown of average student's workload

	Hours	ECTS
Total workload	205	8
Classes requiring direct contact with the teacher	110	5
Student's own work (literature studies, preparation for tutorials,	95	3
preparation for tests and exam)		